AAreps, 87, 163, 170, 174
acetic acid, 73
acetochlor, 86–87, 169–70, 174
acifluorfen, 86, 87
ADF (acid detergent fiber), 72
Agricultural Marketing Service (USDA), 56
Agricultural Research and Demonstration Centers (University of Illinois), 140
agroecology, 61
air-flow fertilizer spreaders, 41–42
air quality, 62
alfalfa (Medicago sativa)
boron deficiency in, 111–12
diseases, 75, 199–201
for hay/pasture, 60, 65–68, 71–73, 75
insect-pest management, 179, 181–83
maintenance fertilizer for, 102
diseases, 75, 199–201
boron deficiency in, 111–12
alfalfa (Zea mays)
fertilizer considerations in reduced tillage, 139–40
machinery and labor costs, 141–42
moisture in soil, 137
mulch-till, 133, 135, 138, 141
no-till, 133–34, 136–42
organic matter in soil, 138
overview and definition, 134
ridge-till, 135–36, 138
sampling depth, 93
stand establishment, 139
strip-till, 109, 134–35, 137, 141
temperature of soil, 137, 141
weed control, 140
contamination. See under water quality
continuous cropping, 50
copper (Cu), 92, 96, 111–12
corn (Zea mays L.), 13–26
acreage, 49
Bt hybrids, 184–90
corn, 49
Bt hybrids, 184–90
as a C4 crop, 1–2
canopy cover, 22–23
cobs, 57
cold injury, 24
cover crops’ effects on yield, 59
critical time for early growth, 6
disease resistance, 17, 201
diseases, 179, 201–3, 215–16
diversity within a field of, 62–63
drought’s effects, 24–25
ear-crop, 24–25
ethanol from, 26, 52, 57
fertility, 201
flex- vs. fixed-ear, 19
flooding’s effects, 24
food-grade, 25–26
genetically adjusted, 7, 15–18, 56–57, 184
glyphosate-resistant/tolerant, 50
hail’s effects, 24
heat’s effects, 25
herbicide injury to, 177
high-amylose, 26
hybrid GDD requirements, 17
hybrid selection, 15–17, 18, 201
importance as food crop, 13
in-row plant spacing, 22
insect-pest management, 179, 183–90
insect resistance, 17, 26, 184

Index

AAreps, 87, 163, 170, 174
acetic acid, 73
acetochlor, 86–87, 169–70, 174
acifluorfen, 86, 87
ADF (acid detergent fiber), 72
Agricultural Marketing Service (USDA), 56
Agricultural Research and Demonstration Centers (University of Illinois), 140
agroecology, 61
air-flow fertilizer spreaders, 41–42
air quality, 62
alfalfa (Medicago sativa)
boron deficiency in, 111–12
diseases, 75, 199–201
for hay/pasture, 60, 65–68, 71–73, 75
insect-pest management, 179, 181–83
maintenance fertilizer for, 102
diseases, 75, 199–201
boron deficiency in, 111–12
alfalfa (Zea mays)
fertilizer considerations in reduced tillage, 139–40
machinery and labor costs, 141–42
moisture in soil, 137
mulch-till, 133, 135, 138, 141
no-till, 133–34, 136–42
organic matter in soil, 138
overview and definition, 134
ridge-till, 135–36, 138
sampling depth, 93
stand establishment, 139
strip-till, 109, 134–35, 137, 141
temperature of soil, 137, 141
weed control, 140
contamination. See under water quality
continuous cropping, 50
copper (Cu), 92, 96, 111–12
corn (Zea mays L.), 13–26
acreage, 49
Bt hybrids, 184–90
corn, 49
Bt hybrids, 184–90
as a C4 crop, 1–2
canopy cover, 22–23
cobs, 57
cold injury, 24
cover crops’ effects on yield, 59
critical time for early growth, 6
disease resistance, 17, 201
diseases, 179, 201–3, 215–16
diversity within a field of, 62–63
drought’s effects, 24–25
ear-crop, 24–25
ethanol from, 26, 52, 57
fertility, 201
flex- vs. fixed-ear, 19
flooding’s effects, 24
food-grade, 25–26
genetically adjusted, 7, 15–18, 56–57, 184
glyphosate-resistant/tolerant, 50
hail’s effects, 24
heat’s effects, 25
herbicide injury to, 177
high-amylose, 26
hybrid GDD requirements, 17
hybrid selection, 15–17, 18, 201
importance as food crop, 13
in-row plant spacing, 22
insect-pest management, 179, 183–90
insect resistance, 17, 26, 184
classified by site of action, 173–74
common names, 163
compatibility agents, 172
crop conservation tillage, 140
crop injury from, 176–77
crop oil concentrates (COC), 172
and drainage, 144
drift reduction agents, 172
formulation types, 163–70
how they work, 173
isomers, 167–69
nonionic surfactants (NIS), 172
overview, 162
phytotoxicity, 163, 177
premixes, 169–70
product labels, 87, 162–63, 171–72
soil-applied, 157, 170–71
stereoisomers, 167–68
trade names, 163
translocated, 154
volatility, 171
and water quality, 173, 175–76
herringbone drainage, 145–46
Hessian flies, 179, 194–96
Hessian fly-free dates, 39–41, 43, 195
HFS (highly fermentable starch), 26
hidden-hunger checkups, 84–95
Hoplolaimus galeatus, 216
hopperburn, 182–83
horsenettle, 154
horseweed, 154
horseweed control, 69–70, 74
(Hoplolaimus galeatus)
 invisible-hunger checkups, 84–95
Hog (H), 95, 113, 121, 166
hypomagnesaemia, 100
IHP (inductively coupled plasma)
emission spectroscopy, 94, 101
ILinois Department of Agriculture, 97, 141
ILinois Department of Public Health, 84–85
ILinois Department of Transportation, 97
ILinois Drainage Guide (Online), 146, 148
ILinois EPA (Environmental Protection Agency), 83, 86
ILinois Integrated Water Quality Report and Section 303d List—2008, 83
ILinois Pesticide Applicator Training Manual 39-2: Field Crops, 179
ILinois State Geological Survey, 151
ILinois State Water Survey, 85, 151
ILinois Voluntary Limestone Program Producer Information, 97
ILinois Well Construction Code, 85
Imazethapyr, 87, 173–74
Indiangrass, 79–81
Inoculation of legumes, 32, 70, 76–77
insecticides for alfalfa, 182
chloronicotinyl, 184–85, 188, 190, 194–96
foliar-applied, 192–96
seed-applied, 41, 184–85, 188, 190, 194–96
soil-applied, 185
insect-, pest management, 179–96
curative, 180
developing strategies, 180–81
for hay and pasture, 69–70, 74
IPM (integrated pest management), 88, 180, 183, 187
overview, 179–80
preventive, 180
See also pesticides and specific insects and other pests
IR (insect resistance management), 88, 180, 183, 187
IRM (insect resistance management) strategies, 184, 188
See also insect-, pest management
iron (Fe), 95, 96, 107, 111–12
interception, 49–50
intereading, 70–71
IPM (integrated pest management), 88, 180, 183, 187
little barley, 154
lupines, 77
limestone applying, 99
calcitic (CaCO₃), 100, 111
dolomitic (CaMg(CO₃)₂), 100, 111
ENV (effective neutralizing value), 96–99
low-Mg, 100
for pH neutralizing, 96–99
rate calculation, 97–99
rate recommendations, 97
sampling, 97
magnesium (Mg), 91, 95, 111
manganese (Mn), 92, 95–96, 99, 111–12
manure, 115, 125, 131–32
Maxim, 199
MBC (methyl benzimidazole carbamates), 199
MCLs (maximum contaminant levels), 83
meadow fescue, 77–78
mefenoxam, 203–4
Mehlich-3 test, 97, 104, 101
copper (Hg), 95
metalaxyl, 203–4
metabolites, 87, 168–70, 174
mitribuzin, 86–87, 174
microbes, 50, 59, 117, 121
milk fever, 100
milkweed, 154
milo. See sorghum
mineralization, 106, 117–18, 132
miscanthus (Miscanthus x giganteus), 2, 58
moldboard plowing, 138
molybdenum (Mo), 96, 111–12, 128
nitrapyrin (N-Serve), 88, 123

El Niño, 11–12

La Niña, 11–12

nightshade, 140, 158–59, 175

Nematology Lab (University of Illinois–Springfield), 88

nutrients. See soil pH and crop nutrients and specific nutrients

Nutrient Standards Forum (University of Illinois–Springfield, 2007), 88

nutsedge, 154, 159

oats

broadcast vs. drilled, 45 as a companion crop, 68, 130
disking the stalls, 45 for hay and pasture, 77
herbicide sensitivity, 45
maintenance fertilizer for, 102
nitrogen rates, 129–30
nutrient levels for, 101
planting dates, 45
seed treatment with fungicides, 45
spring variety, 44–45
test weight, 44
varieties, 45
winter variety, 45

oilseed sunflower, 45

P. brachyurus, 216

P. helenium, 216

P. zeae, 216

Pacific Ocean, 11

panicum, 158

parallel drainage, 134–46
paraquat, 70–71, 174
parasites. See nematodes

pasture. See grazing; hay and pasture

PCNB, 199

PEAQ (“Predictive Equations for Alfalfa Quality”), 72–73

pearl millet, 26

Pennisetum, 26

pennycress, 26

Pepersen, Palle, 29

pennycress, 154

Performance of Commercial Corn Hybrids in Illinois, 17

Performance of Commercial Soybeans in Illinois, 28

pesticides, 83, 85, 88, 163

See also insecticides

Pest Management of Alfalfa Insects in the Upper Midwest, 82–83

pests

in corn, key, 185–90
defoliators, 191–93, 195
key pests, 179
and nutrient uptake, 92
population density, 180–81
predators, 180
soybean pest list, 191

See also insect-pest management; nematodes; and specific pests

pH. See soil pH and crop nutrients

phenylamides, 199

phenylpyroles, 199

phosphorus (P)

fertilization, 102, 105–7, 110
in manure, 132
for pasture renovation, 70
and pH, 99
as a pollutant, 109
recommendations, 101–2
removal, 101, 106
soil testing, 93–95, 101
solubility, 106–7
stratification, 139
supplying power, 100–101, 105

phosphorus pentoxide (P2O5), 102, 105–7, 109

photoperiod sensitivity, 27

physical climate forecasting, 11

Phytophthora root rot, 200–201

203–4

PI (profitability index), 146

pigweed, 154, 159, 175

Pioneer Hi-Bred International, 29

Planning Your Well: Guidelines for Safe, Dependable Drinking Water, 84

plant analysis, 95

Plant Clinic (University of Illinois), 197, 215

PLS (pure live seed), 67

POC (petroleum oil concentrate), 172

pod blight, 203, 205

poison hemlock, 154, 159

pollution, 62

popcorn, 26

potash, white vs. red, 107

potassium (K)
as a cation, 95
as a drying agent, 73
fertilization, 103–7, 110
in manure, 132
overview, 103
for pasture renovation, 70
recommendations, 103–5
removal, 106
soil testing, 93–95, 103
stratification, 139

potassium oxide (K2O), 102, 105–6, 108–9

potato leafhoppers, 75–76, 179, 181–83, 191

powdery mildew, 204–7

PPI (preplant incorporated) herbicide applications, 170

PPO (protoporphyrinogen oxidase) inhibitors, 174–75

precipitation, 5–8, 119, 150